Rehabilitation of the Older Vascular Amputee: A Review of the Literature

Aisling M Fleury, Salih A Salih, and Nancye M Peel

Geriatr Gerontol Int 2012

Background: A total of 75% of all lower extremity amputations occur in persons over the age of 65 years, with vascular disease being a significant cause for 90% of such amputations in older adults. The proportion of amputees aged 85 years or older is projected to increase from 20% to 35% in the next 40 years. For older dysvascular amputees with above knee amputation, less than one-third will become successful prosthetic users. Therefore, for older amputees, an alternative to prosthetic mobility needs to be considered.

Objectives: The aim of the present study was to review the literature on rehabilitation of older dysvascular amputees to understand the factors in this cohort affecting suitability for prosthetic rehabilitation. In the light of these findings, the management of mobility for those assessed as unsuited for a prosthetic limb was discussed.

Criteria for selecting studies for this review:

Types of studies: Original journal article (reviews and meta-analyses excluded. **Types of participants:** People with amputations who are more than 65 years; vascular cause for the amputation; and amputation level of below knee, transtibial amputation (TTA), through-the-knee (TKA) or above knee (AKA), Transgenicular (TGA), Gritti Stokes amputation, transfemoral amputation (TFA), and bilateral amputations (table 1).

Types of interventions and outcome measure: Reference table 1

Search strategy for identification of studies: A search of the literature was carried out using the MEDLINE, EMBASE and CINAHL databases up to September 2010. **Conclusion:**

Identifying patients who will undergo successful prosthetic rehabilitation is challenging as well as to predict whether prosthetic use will be continued and to what extent. Multidisciplinary teams are good at predicting successful prosthesis users, but less so at predicting non-users. Identifying patients likely to benefit, or not, from gait retraining is challenging because of the heterogeneity within the amputee literature. Studies use different outcome assessment tools and the definition of successful prosthetic use also varies. Formulation of a single amputee-specific mobility assessment tool and agreement on the definition of successful gait retraining would allow comparison between studies, and therefore allow more accurate patient selection. Given the challenges in selection of successful prosthetic rehabilitation candidates, further research into this area is required.

Rehabilitation of the Older Vascular Amputee: A Review of the Literature

Study author, year	Study design	Characteristics of study population	Outcome measure	Predictors of successful prosthetic use/fitting
Fletcher, 2002 ²	Retrospective cohort	 n = 292 Age >65 years 	Successful prosthetic fitting defined as dismissal from physical therapy (inpatient or outpatient) with a definitive prosthesis	Younger age Lower level of amputation
Schoppen, 20036	Prospective cohort	 n = 46 Mean age at amputation 73.9 years (SD 7.9) 70% male 	Graded classification of prosthetic use dichotomised into functional use (score = I-IV) and non-functional use (score = V-VII)	 Better one leg balance on the unaffected limb
Callaghan 2008 ¹⁷	Prospective cohort	 π = 166 Mean age 66.73 years (SD 10.3) 69.3% male 	1 and 6 months FU with: FMA (indoor use; outdoor use; h/day; days/week) LCI	FMA • Believes treatment effective • Perceives symptoms as not fluctuating LCI • Lack of distressing thoughts
Johannesson 2010 ¹⁸	Prospective cohort	 n = 217 Transitibial amputation Mean age = 77 years \$1.6% male 	Functional status at 1 year follow up after amputation: Good: Patient received prosthesis, wore it daily and walks alone indoor, walks with or without assistance outdoor. Poor: Patient idi not receive a prosthesis, or received it but did not wear it daily, unable to walk indoor without assistance; mostly used wheelchair	 No significant predictors for good function at 1 year follow up
O'Neill 2009 ¹⁹	Prospective cohort	 π = 34 Mean age 60.69 years (SD 13.98) 82.4% male 	LCI SIGAM mobility grades	Better visual memory (figure recall) Immediate verbal memory Younger age Lower level of amputation Absence of pain Better werbal fluency
ErJavec 2008 ²⁰	Prospective cohort	 π = 63 Age 72.5 years (SD 9.1) Transfemoral amputation 	Whether prosthesis fitted or not based on clinical decision	Better results on exercise stress test Better results for 6-min walk time Higher FIM score Younger age
Traballesi 2007 ²¹	Retrospective cohort	 η = 30 Age 65 years (SD 10) Bilateral above-knee amputees 	Barthel Index LCI	Younger age Good stump quality
Table 1 Continued				
Study author, year	Study design	Characteristics of study population	Outcome measure	Predictors of successful prosthetic use/fitting
Fraballesi 1998 ²²	Prospective cohort	 n = 144 Mean age 68.7 years (SD 10.2) 66% males Above-knee amputees 	Barthel Index Rivermead Mobility Index	Younger age Absence of vascular impairment of residual limb
Kurichi 200715	Retrospective cohort	n = 2375	Prosthetic prescription within 1 year of amputation	Younger age (<75) Higher cognitive and motor FIM score Lower level of amputation
Lamer 2003 ²³	Prospective design study	 π = 43 Mean age 66.35 years (SD 14.99) Transfemoral/transtibial amputation 	Use of prosthesis during rehabilitation	 Lower level of amputation Higher score on test of learning ability
Chin 200224	Prospective cohort	n=17	Ability to walk 100 m with/without cane	 Higher %VO2 max Fewer comorbidities Good ability to stand on remaining leg Strong will to walk
Fletcher 2001 ¹	A retrospective cohort	 π = 199 Mean age at amputation 79.7 years 	Successful prosthetic fitting defined as dismissal from physical therapy (inpatient or outpatient) with a definitive prosthesis	Younger age Absence of dementia Lower level of amputation Absence of cerebrovascular disease
Iermodsson 1998 ²⁵	Prospective cohort	 n = 112 51% male Age 7.6. years (SD 10.3) Unilateral transtibial amputation 	Being prescribed a prosthesis Functional use of prosthesis at 6 months	Younger age Independent mobility outdoor prior amputation No using wheelchar before amputation Left leg amputation Male
			FU	 Independent mobility outdoor prior amputation
Siriwardena 1991 ²⁴	Prospective cohort	• n = 598 • Age >50 years	Walking ability index with prosthesis at 6, 9 and 12 months follow up	 Younger age Absence of IHD at 6 months Absence of hemplegia at 12 months Absence of bronchitts at 12 months Single amputee at 12 months
DConnell 1989 ²⁷	Cohort study	 n = 46 Dysvascular amputee and hemiplegiaMean age 63 years 	Independent ambulation with prosthesis	Mild hemiparesis Lower level of amputation Prior ability to ambulate before second disability

Rehabilitation of older vascular amputee

AM Fleury et al.

Table 1 Factors affecting successful prosthetic rehabilitation of the older vascular amputee

%VO2, percentage of volume oxygen maximum; FIM, Functional Independence Measure; FMA, functional measure for amputees; FU, follow up; IHD, ischemic heart disease; LCI, Locomotor Capability Index; SICAM, special interest group in amputation medicine.